Open Source Vizier: *
Blackbox Optimization
Service

Xingyou (Richard) Song
xingyousong@google.com

On behalf of the Vizier Team

Google Research

mailto:xingyousong@google.com

Vizier Team

Setareh Ariafar Lior Belenki Emily Fertig Daniel Golovin Tzu-Kuo Huang Greg Kochanski

e : i P & -
Chansoo Lee Sagi Perel Adrian Reyes Xingyou Song Richard Zhang

Google Research

Google Vizier (2017) 3 Google

e Tunes many of Google’s research + products
e Thousands of monthly users

e Tuned millions of objectives

er
AutomatedStopping Suggestion
‘Workers Workers

Automated Stopping Service Suggestion Service

Evaluation
‘Workers

Google Research

Notable Users / Downstream Wins

Production
e Search, Ads, Youtube

Tuning Research Results:

e Hardware Design, Robotics

e Protein Design

Backend for Evolution:

e Neural Architecture Search

e Symbolic Algorithm Search

FI

Google

o

I

4 r

] 27 EEIS

53 [33| (55 [58
\

g

s 8| [
O moEm
* \ ‘h

ssssssssss

Lpon = (Qe(st,ar) — (re +v % mngB'(StH,a)))z

Google Research

https://ai.googleblog.com/2021/02/machine-learning-for-computer.html
https://ai.googleblog.com/2022/08/towards-helpful-robots-grounding.html
https://ai.googleblog.com/2022/03/using-deep-learning-to-annotate-protein.html
https://www.google.com/search/about/
https://ads.google.com/
https://www.youtube.com/
https://ai.googleblog.com/2017/11/automl-for-large-scale-image.html
https://ai.googleblog.com/2021/04/evolving-reinforcement-learning.html

Systems

Pl

A

Research

Table of Contents

Why a Service?

Comparisons to Other Packages
OSS Vizier Infrastructure
User/Client API: Distributed Tuning
Developer API: Writing Algorithms
Default Algorithm: GP-Bandit

Integrations

O N OO AW N

Future

Google Research

Questions?

Why a Service?

P

Client 1

e ————

e

Client 2

e ———

(G S i)

Client 3

e ———

0SS Vizier Service

A (Service API] . Suggestion

A

Google Research

The Wide Variety of Scenarios

v

v

e Tuning large ML model hyperparameters

e Chemical/Biological processes

e Optimizing cookie recipes

Very different workflows!

Google's new Al learns by baking tasty machine learning cookies

The system "designs excellent cookies", according to its creators

Ads by Google

Stop seeing this ad

Why this ad? [

https://pubs.acs.org/doi/10.1021/ar960017f
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/46507.pdf

Workflow Possibilities

e Eval Latency: Seconds to Weeks |
e Eval Budget: 10" to 107 Trials l
e Asynchronous or Synchronous (Batched) o

e Failed evaluations: Retried or abandoned

e FEarly Stopping Zg X

Google Research

Benefits of a Service: No Evaluation Assumptions!

Users have freedom of when to:

o Request trials

o Evaluate Trials

o Report results

Service can preserve data on prior usage

o Led to OptFormer paper!

'S Ws,

~ o3

l)

J‘O 0

000 OOO O

§

OptFormer

. %c‘ oot
¥ 00, QJ gy,
R 7o £
e,

Metadata

IOO OOO OO

|
e

)
Aoz
oy

/

esv;

e, 0, | e

Trial 1

hd

Tri

“10'

al ¢

§"7!

§3

&z

Google Research

https://arxiv.org/abs/2205.13320

OSS Vizier: 2022

e Standalone + customizable Python codebase

e User can host service

Open Source Vizier: Reliable and Flexible \"‘
Black-Box Optimization.

pypi package m) pytest_core |passing C) pytest clients 'passiig] () pytest algorithms |passingl () pytest benchmarks |passing
) docs [passing

Google Al Blog | Getting Started | Documentation | Installation | Citing Vizier

Google Research

Comparisons to Other Packages

Google Research

Types of Packages

e Services: Host algorithms on a server.

o More flexible + scalable

o Additional engineering complexity

e Frameworks: Execute entire optimization (both algorithm + objective)

o Convenient, full automation

o Requires same programming language + knowledge of entire eval pipeline

e Libraries: Implement blackbox optimization algorithms

o Offer most freedom

o Lack scalability features / limited to single machine / same programming language

Google Research

Services

* Aavisor (2017

e OpenBox (2021)

e OSS Vizier (ours)

Google Research

Frameworks
v

e Ax (2021) 4 AX

e HpBandSter (2018)

H automl [HpBandSter (Public

Google Research

Libraries

e BoTorch (2020)

HyperOpt (2013)

Dragonfly (2020)

HYPEROPT

f\;z‘ Dragonfly

Google Research

Comparisons

Name Type Client Parallel ~ Features®
Languages Trials

OSS Vizier Service Any Yes Multi-Objective, Early Stopping, Transfer Learning,
Conditional Search

SMAC Framework Python Yes Multi-Objective, Multi-fidelity, Early Stopping, Condi-
tional Search, Parameter Constraints

Advisor Service Any Yes Early Stopping

OpenBox Service Any Yes Multi-Objective, Early Stopping, Transfer Learning, Pa-
rameter Constraints

HpBandSter Framework Python Yes Early Stopping, Conditional Search, Parameter Con-
straints

Ax + BoTorch Framework Python Yes Multi-Objective, Multi-fidelity, Early Stopping, Transfer
Learning, Parameter and Outcome Constraints

HyperOpt Library Python No Conditional Search

Emukit Library Python No Multi-Objective, Multi-fidelity, Outcome Constraints

Google Research

OSS Vizier Infrastructure

Google Research

Distributed Communication

e Remote Procedure Calls (RPCs) formatted as Protocol Buffers (protobufs)

e Server + Client classes based on gRPC

protobuf §

Protocol Buffers

'gRPC

A high performance, open source universal RPC framework Google Research

PyVizier: Abstracting away Protobufs

e Hides away RPC protobufs from user + algorithms

e Use same Python libraries across all Vizier variants

e More Pythonic data structures

s|param_2 = study_pb2.Trial.Parameter (parameter_id='model_type',

from vizier.service import study_pb2

2| from google.protobuf import struct_pb2

param_1 = study_pb2.Trial.Parameter (parameter_id='learning_rate', value=struct_pb2.

Value (number_value=0.4))

value=struct_pb2.
Value(string_value='vgg'))

metric_1 = study_pb2.Measurement.Metric(metric_id='accuracy',value=0.4)

7imetric_2 = study_pb2.Measurement.Metric(metric_id='num_params',value=20423)
s| final_measurement = study_pb2.Trial.Measurement(metrics=[metric_1,metric_2])

trial = study_pb2.Trial(parameters=[param_1,param_2], final_measurement=

final_measurement)

© ® N G s W N

from vizier.pyvizier import ParameterDict, ParameterValue, Measurement, Metric,
Trial

params=ParameterDict ()

params['learning_rate'] = ParameterValue (0.4)

params['model_type'] = ParameterValue('vgg')

final_measurement = Measurement()

final_measurement.metrics['accuracy'] = Metric(0.7)

final_measurement.metrics['num_params'] = Metric(20423)

trial = pv.Trial(parameters=params,final_measurement=final_measurement)

Original Protobuf: Verbose + Complex

PyVizier: More Pythonic!

Google Research

Language + Platform Independence

Protobufs (for RPC Backend) are ubiquitous across:
e Languages

o C++, Python, Java, and many more

e Platforms

o Linux, Windows, Mac

Google Research

Core Server-Client Procedure

e Client sends SuggestTrials RPC to

Client 1]
get suggestions J

Server. [

e Server starts Pythia policy

Client 2

o Operation protobuf to keep track of =~ [Frerincemediese \% .
everyt hin g [Client 3] cnrretaizariystop A/

should trial_stop EarlyStopOp : (a)
J

e Client repeatedly pings server on e
Client 4) x_.i.tmm_.:::.: “ Datastore
status of Operation [ey | /

e Client finally receives suggestion All transactions + operations are stored in
server datastore!

Google Research

Suggestion Animation (Full)

OSS Vizier Service
f—\
Client 1
gL A Suggest

)

Client 2 A [Service API] . Suggestion

_—

—) Measurement
Client 3 A '

— |

Google Research

Questions?

User/Client API: Distributed Tuning

Google Research

Definitions

e Study:

Entire Optimization Run

e StudySpec: Configuration

O

O

O

O

Search Space
Algorithm

Noise

Study
(StudySpec

)

ParameterSpecs

Name: learning rate
Double: [0.0, 1.0]
ScaleType: REVERSE LOG

Name: model type
Categorical: {“resnet”,

“vgg”}]

etricSpecs

Algorithm: RANDOM
ObsNoise: LOW L
\ AutoStop: None

Goal: MAXIMIZE

Name: accuracy Name: num params
Goal: MINIMIZE

s

Name: “owners/../studies/..”
DisplayName: “CIFAR-10”
State: ACTIVE

\Create'l‘ime: 1/1/2022

earning_rate: 0.3

_ earni:
model_type: “vgg” model_t:

Trials

curacy: 0.79

cou:

ac accuracy: 0.56
num_params: 602430 num_params: 20423

ype: “resnet’

e ParameterSpec: Parameter Specification

e MetricSpec:

Metric Specification

Google Research

Search Space Construction: ParameterSpecs

Core: Each ParameterSpec also contains:
e Double: Continuous range [a,b] e Scaling Type (uniform, log)
e Integer: Integer range [a,b] e Child/Conditional Parameters
e Discrete: Finite set of floats.

Categorical: Finite set of strings.

estimator optimizer
D ftrl

Linear NN SVM Int [64-2048]

) . l

learning_rate num_hidden_layers learning_rate 11_regularization

adagrad

l i l l Google Research

Double [0-1] Int [1-5] Double [0-1] Double [0-10]

Setting up Client

Algorithm, search space, and metrics.

study_config = vz.StudyConfig(algorithm="'GAUSSIAN_PROCESS_BANDIT')
study_config.search_space.root.add_float_param('w', 0.0, 5.0)
study_config.search_space.root.add_int_param('x', -2, 2)
study_config.search_space.root.add_discrete_param('y', [0.3, 7.2])
study_config.search_space.root.add_categorical_param('z', ['a', 'g', 'k'])

study = clients.Study.from_study_config(study_config, owner='my_name', study_id='example')

Google Research

Setting up Server (Optional)

e Server will be implicitly + locally created if not specified.

server = vizier_server.DefaultVizierServer(host=FLAGS.host)

Google Research

Tuning Loop

Loop involves:

e Client obtains suggestions from server
e Evaluating suggestions
e Completing suggestions + updating server

for i in range(10):
suggestions = study.suggest(count=1)
for suggestion in suggestions:

params = suggestion.parameters
objective = evaluate(params['w'], params['x'], params['y'], params['z'])
suggestion.complete(vz.Measurement({'metric_name': objective}))

Google Research

Developer API: Writing Algorithms

Google Research

Typical Algorithm Design: “Designer”

e Very typical API for writing an algorithm:

class Designer(...):
"""Suggestion algorithm for sequential usage."""

@abc.abstractmethod
def update(self, completed: CompletedTrials, all_active: ActiveTrials) -> None:
"""Updates recently completed and ALL active trials into the designer's state."""

@abc.abstractmethod

def suggest(self, count: Optionall[int] = None) —> Sequence[vz.TrialSuggestion]:
"""Make new suggestions."""

Google Research

Service Requirements

e Ensure fault-tolerance on algorithms:

o Fresh algorithm can recover when needed

o Use historical trials as “algorithm state”!
e Querying the history:
o Algorithm can query whichever trials they need.

o Very useful for algorithms which work in batches/populations

m eg. Genetic A|gorithms Original Population New Population

Crossover

Mutation

Hosted Algorithm: “Policy”

e PolicySupporter: Query previous trials to recover state.

e stateless algorithm: Stateless algorithm or Designer

class TypicalPolicy(Policy):

def __init_ (self, policy_supporter: PolicySupporter):
self._policy_supporter = policy_supporter

def suggest(self, request: SuggestRequest) —> SuggestDecision:
all_completed = policy_supporter.GetTrials(status_matches=COMPLETED)
all_active = policy_supporter.GetTrials(status_matches=ACTIVE)
suggestions = stateless_algorithm(all_completed, all_active)
return SuggestDecision(suggestions)

Google Research

Algorithms Included

e Classic: Random, Grid, Shuffled-Grid, Quasi-Random
e Evolution: CMA-ES, NSGA2

e Boolean: BOCS, Harmonica

e Bayesian: GP-Bandit

Google Research

Default Algorithm: GP-Bandit

Google Research

Animation from [Wang et al., 2023 “Pre-trained Gaussian processes”]

Vizier GP-Bandit Main Components

Inspired by original 2015 C++ implementation (before AutoDiff)

Gaussian Process Kernel
o Matern-5/2
Upper-Confidence Bound Acquisition

o Evolutionary Optimizer “Eagle Strategy”

Objective Warping

o Outlier removal + Gaussian-fitting + Log warping
ARD Optimization

o JAX-based LBFGS-B

10.0

7.5

5.0

2.5

0.0

—2.51

00 02 04 0.6 08 1.0

Google Research

https://arxiv.org/abs/1004.4165

Advantages over other BayesOpt Algorithms

e AutoDiff + GPU support via JAX + Tensorflow Probability
o Most other packages only use NumPy or Sklearn

e “Advanced” Tricks

o Trust Region, Warping, ARD-optimization, Self-Tuning
e Industry-Grade Code Quality

o PyType, Rigorous testing, Clean abstractions

,
N
7’v PE angq)Pﬂt S I G O PT Google Research

Questions?

Integrations

Google Research

Benchmarks .

Included:
e BBOB, COMBO
e NASBENCH (101 + 201)
e HPOB
e AtarilO0K

e Utilities (Noise, Shifting, Sparsifying, etc.)

http://numbbo.github.io/coco-doc/bbob-largescale/functions/
https://arxiv.org/abs/1902.00448
https://github.com/google-research/nasbench
https://github.com/D-X-Y/NAS-Bench-201
https://arxiv.org/abs/2106.06257
https://github.com/google/dopamine

[Daiyi Peng et al., 2021 “PyGlove: Symbolic Programming for Automated Machine Learning”]

PyGlove: Evolutionary + Combinatorial Computation

e OSS Vizier only supports flat search spaces + conditionals

) . n n!
Lacks choice function: A
’ </<:> R —).

e Integrate Vizier backend w/ PyGlove!

o Vizier handles distributed system I G

o Ex: Evolution for NAS, Genetic Programming

Hidden State
Mutatlon se| p
7x7 3 3

* < *

Google Research

https://github.com/google/pyglove
https://ai.googleblog.com/2018/03/using-evolutionary-automl-to-discover.html
https://ai.googleblog.com/2021/04/evolving-reinforcement-learning.html

Vertex/Cloud Vizier

e Prod service for external users / businesses

e Shared client API: Easily switch b/w OSS or Cloud

Vertex Al > Documentation > Guides Was this helpful? @5 GJ
Vertex Al Vizier overview 0 Send feedback

Vertex Al Vizier is a black-box optimization service that helps you tune hyperparameters in complex machine learning
(ML) models. When ML models have many different hyperparameters, it can be difficult and time consuming to tune
them manually. Vertex Al Vizier optimizes your model's output by tuning the hyperparameters for you.

Google Research

Future

Google Research

Potential + On-going External Integrations

e Potential algorithm add-on to RayTune

e Cross-study integration w/ OpenML

e
X/ T

32 0OpenML
NN Google Research

https://docs.ray.io/en/latest/tune/index.html
https://github.com/josvandervelde/OpenML-Vizier-Converter

Algorithms

Upcoming GP-UCB-PE algorithm

@)

PE = “Pure Exploration”

Baseline reimplementations

(@)

Upcoming whitepaper on Vizier's GP algorithms

(@)

(@)

Ex: HEBO, TuRBO

Exact descriptions to allow reproducibility

Comparisons to existing packages

Pure Exploration in Finitely-Armed and

40 avenue Halley, 59650 Villeneuve d’Ascq, France

40 avenue Halley, 59650 Villeneuve d’Ascq, France

Continuous—Armed Bandits

Sébastien Bubeck*
INRIA Lille - Nord Europe, SequeL project,

Rémi Munos*
INRIA Lille - Nord Europe, Sequel. project,

Gilles Stoltz*

Ecole Normale Supéricure, CNRS
75005 Paris, France

HEC Paris, CNRS,
78351 Jouy-en-Josas, France

HEB®)?

......

Evolutionary Bayesian Optimisatic

0.001

1e6 Dim: 16 Exp: ROSENBROCK_ROTATED

—— designer_gp_bandit
—— vza_designer_gp
—— vza_designer_gpa_eagle

~—— vza_designer_gpa_warper_ard

0 20 40 60 80 100 120 140 160
of Trials

Google Research

https://github.com/huawei-noah/HEBO
https://arxiv.org/pdf/1910.01739.pdf

Links

Code: https://github.com/gooale/vizier

Documentation: https://oss-vizier.readthedocs.io/en/latest/index.html

Al Blog:

https://ai.googleblog.com/2023/02/open-source-vizier-towards-reliable-and.html

Paper: https://arxiv.org/abs/2207.13676

OpenReview: https://openreview.net/forum?id=SfIRITSUxc

Google Research

https://github.com/google/vizier
https://oss-vizier.readthedocs.io/en/latest/index.html
https://ai.googleblog.com/2023/02/open-source-vizier-towards-reliable-and.html
https://arxiv.org/abs/2207.13676
https://openreview.net/forum?id=SfIRlTSUxc

Thanks!

Google Research

