
Open Source Vizier:
Blackbox Optimization
Service
Xingyou (Richard) Song
xingyousong@google.com

On behalf of the Vizier Team

mailto:xingyousong@google.com

Vizier Team

Setareh Ariafar Lior Belenki Emily Fertig Daniel Golovin Tzu-Kuo Huang Greg Kochanski

Chansoo Lee Sagi Perel Adrian Reyes Xingyou Song Richard Zhang

● Tunes many of Google’s research + products

● Thousands of monthly users

● Tuned millions of objectives

Google Vizier (2017)

Tuning Research Results:

● Hardware Design, Robotics

● Protein Design

Notable Users / Downstream Wins
Production

● Search, Ads, Youtube

Backend for Evolution:

● Neural Architecture Search

● Symbolic Algorithm Search

https://ai.googleblog.com/2021/02/machine-learning-for-computer.html
https://ai.googleblog.com/2022/08/towards-helpful-robots-grounding.html
https://ai.googleblog.com/2022/03/using-deep-learning-to-annotate-protein.html
https://www.google.com/search/about/
https://ads.google.com/
https://www.youtube.com/
https://ai.googleblog.com/2017/11/automl-for-large-scale-image.html
https://ai.googleblog.com/2021/04/evolving-reinforcement-learning.html

Table of Contents
1. Why a Service?

2. Comparisons to Other Packages

3. OSS Vizier Infrastructure

4. User/Client API: Distributed Tuning

5. Developer API: Writing Algorithms

6. Default Algorithm: GP-Bandit

7. Integrations

8. Future

Sy
st

em
s

A
PI

R
es

ea
rc

h

Questions?

Why a Service?

● Tuning large ML model hyperparameters

● Chemical/Biological processes

● Optimizing cookie recipes

Very different workflows!

The Wide Variety of Scenarios

https://pubs.acs.org/doi/10.1021/ar960017f
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/46507.pdf

● Eval Latency: Seconds to Weeks

● Eval Budget: 101 to 107 Trials

● Asynchronous or Synchronous (Batched)

● Failed evaluations: Retried or abandoned

● Early Stopping

Workflow Possibilities

● Users have freedom of when to:
○ Request trials

○ Evaluate Trials

○ Report results

● Service can preserve data on prior usage
○ Led to OptFormer paper!

Benefits of a Service: No Evaluation Assumptions!

https://arxiv.org/abs/2205.13320

● Standalone + customizable Python codebase

● User can host service

OSS Vizier: 2022

Comparisons to Other Packages

● Services: Host algorithms on a server.
○ More flexible + scalable
○ Additional engineering complexity

● Frameworks: Execute entire optimization (both algorithm + objective)
○ Convenient, full automation
○ Requires same programming language + knowledge of entire eval pipeline

● Libraries: Implement blackbox optimization algorithms
○ Offer most freedom
○ Lack scalability features / limited to single machine / same programming language

Types of Packages

● OSS Vizier (ours)

● Advisor (2017)

● OpenBox (2021)

Services

● Ax (2021)

● HpBandSter (2018)

Frameworks

● BoTorch (2020)

● HyperOpt (2013)

● Dragonfly (2020)

Libraries

Comparisons

OSS Vizier Infrastructure

● Remote Procedure Calls (RPCs) formatted as Protocol Buffers (protobufs)

● Server + Client classes based on gRPC

Distributed Communication

● Hides away RPC protobufs from user + algorithms

● Use same Python libraries across all Vizier variants

● More Pythonic data structures

Original Protobuf: Verbose + Complex PyVizier: More Pythonic!

PyVizier: Abstracting away Protobufs

Protobufs (for RPC Backend) are ubiquitous across:

● Languages

○ C++, Python, Java, and many more

● Platforms

○ Linux, Windows, Mac

Language + Platform Independence

● Client sends SuggestTrials RPC to

Server.

● Server starts Pythia policy
○ Operation protobuf to keep track of

everything

● Client repeatedly pings server on

status of Operation

● Client finally receives suggestion All transactions + operations are stored in
server datastore!

Core Server-Client Procedure

Suggestion Animation (Full)

Questions?

User/Client API: Distributed Tuning

● Study:

Entire Optimization Run

● StudySpec: Configuration

○ Search Space

○ Algorithm

○ Noise

○ …

● ParameterSpec: Parameter Specification

● MetricSpec:

Metric Specification

Definitions

Core:

● Double: Continuous range [a,b]

● Integer: Integer range [a,b]

● Discrete: Finite set of floats.

● Categorical: Finite set of strings.

Each ParameterSpec also contains:

● Scaling Type (uniform, log)

● Child/Conditional Parameters

Search Space Construction: ParameterSpecs

Setting up Client

● Server will be implicitly + locally created if not specified.

Setting up Server (Optional)

Loop involves:
● Client obtains suggestions from server

● Evaluating suggestions

● Completing suggestions + updating server

Tuning Loop

Developer API: Writing Algorithms

Typical Algorithm Design: “Designer”
● Very typical API for writing an algorithm:

● Ensure fault-tolerance on algorithms:
○ Fresh algorithm can recover when needed

○ Use historical trials as “algorithm state”!

● Querying the history:
○ Algorithm can query whichever trials they need.

○ Very useful for algorithms which work in batches/populations

■ e.g. Genetic Algorithms

Service Requirements

● PolicySupporter: Query previous trials to recover state.

● stateless_algorithm: Stateless algorithm or Designer

Hosted Algorithm: “Policy”

Algorithms Included
● Classic: Random, Grid, Shuffled-Grid, Quasi-Random

● Evolution: CMA-ES, NSGA2

● Boolean: BOCS, Harmonica

● Bayesian: GP-Bandit

Default Algorithm: GP-Bandit

Vizier GP-Bandit Main Components
Inspired by original 2015 C++ implementation (before AutoDiff)

● Gaussian Process Kernel
○ Matern-5/2

● Upper-Confidence Bound Acquisition
○ Evolutionary Optimizer “Eagle Strategy”

● Objective Warping
○ Outlier removal + Gaussian-fitting + Log warping

● ARD Optimization
○ JAX-based LBFGS-B

Animation from [Wang et al., 2023 “Pre-trained Gaussian processes”]

https://arxiv.org/abs/1004.4165

Advantages over other BayesOpt Algorithms
● AutoDiff + GPU support via JAX + Tensorflow Probability

○ Most other packages only use NumPy or Sklearn

● “Advanced” Tricks
○ Trust Region, Warping, ARD-optimization, Self-Tuning

● Industry-Grade Code Quality
○ PyType, Rigorous testing, Clean abstractions

Questions?

Integrations

Included:
● BBOB, COMBO

● NASBENCH (101 + 201)

● HPOB

● Atari100K

● Utilities (Noise, Shifting, Sparsifying, etc.)

Benchmarks

http://numbbo.github.io/coco-doc/bbob-largescale/functions/
https://arxiv.org/abs/1902.00448
https://github.com/google-research/nasbench
https://github.com/D-X-Y/NAS-Bench-201
https://arxiv.org/abs/2106.06257
https://github.com/google/dopamine

PyGlove: Evolutionary + Combinatorial Computation

● OSS Vizier only supports flat search spaces + conditionals
○ Lacks choice function:

● Integrate Vizier backend w/ PyGlove!
○ Vizier handles distributed system

○ Ex: Evolution for NAS, Genetic Programming

[Daiyi Peng et al., 2021 “PyGlove: Symbolic Programming for Automated Machine Learning”]

https://github.com/google/pyglove
https://ai.googleblog.com/2018/03/using-evolutionary-automl-to-discover.html
https://ai.googleblog.com/2021/04/evolving-reinforcement-learning.html

● Prod service for external users / businesses

● Shared client API: Easily switch b/w OSS or Cloud

Vertex/Cloud Vizier

Future

● Potential algorithm add-on to RayTune

● Cross-study integration w/ OpenML

Potential + On-going External Integrations

https://docs.ray.io/en/latest/tune/index.html
https://github.com/josvandervelde/OpenML-Vizier-Converter

Algorithms
● Upcoming GP-UCB-PE algorithm

○ PE = “Pure Exploration”

● Baseline reimplementations
○ Ex: HEBO, TuRBO

● Upcoming whitepaper on Vizier’s GP algorithms
○ Exact descriptions to allow reproducibility

○ Comparisons to existing packages

https://github.com/huawei-noah/HEBO
https://arxiv.org/pdf/1910.01739.pdf

Code: https://github.com/google/vizier

Documentation: https://oss-vizier.readthedocs.io/en/latest/index.html

AI Blog:

https://ai.googleblog.com/2023/02/open-source-vizier-towards-reliable-and.html

Paper: https://arxiv.org/abs/2207.13676

OpenReview: https://openreview.net/forum?id=SfIRlTSUxc

Links

https://github.com/google/vizier
https://oss-vizier.readthedocs.io/en/latest/index.html
https://ai.googleblog.com/2023/02/open-source-vizier-towards-reliable-and.html
https://arxiv.org/abs/2207.13676
https://openreview.net/forum?id=SfIRlTSUxc

Thanks!

